Deep Neural Network
Compression

Cosimo Rulli
cosimo.rulli@phd.unipi.it

c
z
<
trl
=
2
-
>

Supervisors
Franco Maria Nardini and Rossano Venturini


mailto:cosimo.rulli@phd.unipi.it

Deep Neural Networks..
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> Representation Learning

> Theoretical Universal Approximators
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> Representation Learning
> Theoretical Universal Approximators

> Accuracy scales with model size and
training epochs

Kaplan, Jared, et al. "Scaling Laws for Neural Language Models." arXiv e-prints (2020).
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..are Getting Huge

> Image Classification. current state-of-
the-art ~100x larger than AlexNet

»  Language Models. Huge architectures
up to 1.75 trillions of parameters

https:/ / openai.com /blog/ ai-and-compute /
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..are Getting Huge

> Image Classification. current state-of-
the-art ~100x larger than AlexNet

»  Language Models. Huge architectures
up to 1.75 trillions of parameters

»  Consequent growth of computational
burden

> Petaflop/s-day increase faster than
Moore’s law

https:/ / openai.com /blog/ ai-and-compute /
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Training is costly

Model Hardware = Power (W) Hours kWh-PUE CO2e Cloud compute cost
T2Tpse P100x8 1415.78 12 27 26 $41-$140

T2T;g P100x8 1515.43 84 201 192 $289-$981

ELMo P100x3 517.66 336 275 262 $433-$1472
BERT,. V100x64 12,041.51 79 1507 1438 $3751-$12,571
BERTy,s. TPUv2x16 - 96 - —  $2074-%$6912

NAS P100x8 1515.43 274,120 656,347 626,155 $942,973-$3,201,722
NAS TPUv2x1 — 32,623 - —  $44,055-$146,848
GPT-2 TPUv3x32 — 168 _ —  $12,902-$43,008

Table 3: Estimated cost of training a model in terms of CO, emissions (Ibs) and cloud compute cost (USD).” Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. "Energy and Policy Considerations for Deep Learning in NLP." Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics. 2019.
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Inference

> A lot of inferences

- 200 trillions of inference

per day at Facebook!

- 90% Of Workload Spent on Phase Freq. FLOPs Devices Constraints
inf t A Training 1 10'° (day) Cloud, Servers None
imnrerence a mazon, Embodded Memory

2 Inference oo 109+12 smartphones Time
NVIDIA PC Energy

> Inference is resource
constrained on the edge (IoT,
Industry 4.0)

thttps:/ / engineering.fb.com/ data-center-engineering / accelerating-infrastructure /

2https:/ /arxiv.org/pdf/2104.10350.pdf



Over-parametrization

> More equations (parameters) than
unknowns (data samples)

> In general

l Over-fitting

| Poor performances

> Neural Networks

T Eases optimization

T Increases generalization

Bubeck, Sébastien, and Mark Sellke. "A universal law of robustness via isoperimetry." Advances in Neural Information Processing Systems 34 (2021).
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Model Compression

> Leverages over-parametrization to compress
DNNs without accuracy degradation

> Reducing
> Memory impact
> Inference time

> Energy consumption

» Main methods
> Pruning
> Quantization
> Knowledge Distillation

> and more..



Pruning



Pruning

> Pruning techniques remove

unnecessary parameters from

neural networks
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* Removing = set to 0

» Reduces memory impact, energy

consumption and speedup

inference



Element-wise vs Structured

> Element-wise. Removes single
weights producing sparse tensors

T High memory compression

J Requires sparse multiplication

» Structured. Removes entire
structures (columns, filters)

T Direct speedup

J Reduced memory compression

. .

Element-wise

Structured




What to Prune?

* How to select which the
parameters to prune?

> With n parameters, 2" possible
pruning patterns

* Heuristic to estimate weight
importance, or penalty to induce
sparsity



What to Prune?

* How to select which the
parameters to prune?

> With n parameters, 2" possible
pruning patterns

* Heuristic to estimate weight
importance, or penalty to induce
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When to Prune?

> During Training. The model is
trained to be sparse

> Same budget as standard
training

> Fine-tuning. Pruning is applied
on a trained, dense model.

> Better accuracy

Sparsity (%)
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Pruning Performance

» Magnitude-based, element-wise
pruning, ResNet50 on ImageNet

0.78
W —0—— o
g 0.76 ResNet50
> Element-Wise Pruning. S o
§ : ResNet34
<
90% sparse, no accuracy drop g 07
= ® Sparse Resnet50
0.70 ResNet18 Dense Resnet
+6% accuracy w.r.t to dense 0o 04 06 08 -

. Density
model w /i same parameters

| Sparse format overhead not

included

Renda, Alex, Jonathan Frankle, and Michael Carbin. "Comparing fine-tuning and rewinding in neural network pruning." International Conference on Learning Representations.
2020.



Research Question

> Pruning is a very effective compression technique, but

v

RQ1. Is there any more principled and effective heuristic than
magnitude?

v

RQ2. What is the relationship between learning and sparsity?

v

RQ3. Can we train sparse network from scratch?

» And many more..

Frankle, Jonathan, and Michael Carbin. "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks." International Conference on Learning Representations. 201¢



Quantization



Quantization

> Classical Computer Science problem

> Large input values set -> small output
values set

> Specific features of neural quantization
> Heavily over-parametrized model

> Decoupling between training and
inference
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Why Quantization?

» Quantization delivers benefits both in
training and inference

» Quantized models offers
> Reduced memory impact
> Faster operations

> Reduced energy consumption
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Weights and Activations

* Quantize weights.

Original
. Ofﬂlne Activations
> Weights can be optimized | |
Quantized Quantized
Activations Weights

> Quantize activations.

> Online (inference time) -> computing
stats is costly (min, max,..)

Quantized
Multiplication

> No optimization



Weights and Activations

* Quantize weights.

Original
] Activati
> Ofﬂlne ctivations
> Weights can be optimized | |
Quantized Quantized
Activations Weights

> Quantize activations.

> Online (inference time) -> computing
stats is costly (min, max,..)

Quantized
Multiplication

> No optimization

Quantizing activations has a huge impact on accuracy




Fine-Tuning

> Post-training Quantization (PTQ). k Pre-trainfd model ] [ Calibration data
. . r Calibration
No re-training (~) ~ J,
Quantization
J Reduced precision — :d —

* Quantization-Aware Training (QAT) : Y [
Pre-trained model
. o ) v i Training data
ngh preCISlOn Quantization
) v v
. Retraining / Finetuning
J Costly re-training phase T
Quantized model




Quantization-Aware Training

* Methodology. Weights quantized after
each gradient update

» Requirements. Backward and gradient
update in full-precision for numerical
reasons

> Problem. Quantizer gradient is zero
almost everywhere

* Solution. Straight-Through Estimator
(STE)

Weigh r
(FP)
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Quantization-Aware Training

* Methodology. Weights quantized after

each gradient update
o e
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> Problem. Quantizer gradient is zero
almost everywhere
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* Methodology. Weights quantized after
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Quantization Performance

Optimizer Task Model Metric Time Mem saved
32-bit Momentum MoCo v2 ResNet-50 67.3 30 days 0.0 GB
8-bit Momentum  MoCo v2  ResNet-50 67.4 28 days 0.1GB
g Flﬂly-quantlZEd tI‘all’llng 32-bit Adam LM Transformer-1.5B 9.0 308 days 0.0 GB
8-bit Adam LM Transformer-1.5B 9.0 297 days 8.5GB
32-bit Adam LM GPT3-Medium 10.62 795 days 0.0 GB
8-bit Adam LM GPT3-Medium 10.62 761days 1.7GB

W/A Approach  Topl

B, PTQ 71.1
» PTQ vs QAT - ResNetl8 on Imagenet WEHIE QAT 69.9
44 PTQ 69.1
> PTQ ~0.1 training budget w.r.t. QAT T0G]
PT 65.6
QAT 3/3 [QAT 69.7 |
PT 51.1
> QAT lossless quantization up to 22 [QAT 67.0]

3/3
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Dettmers, Tim, et al. "8-bit Optimizers via Block-wise Quantization." International Conference on Learning Representations. 2022.
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Wei, Xiuying, et al. "QDrop: Randomly Dropping Quantization for Extremely Low-bit Post-Training Quantization." International Conference on Learning Representations. 2021.

Lee, Junghyup, Dohyung Kim, and Bumsub Ham. "Network quantization with element-wise gradient scaling." Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021



Research Question

v

Quantization is an extremely effective solution

v

RQ1. Can we produce extreme low-bits models as effective as full-
precision ones?

v

RQ2. Can we go beyond STE?

v

RQ3. Can we use FPGA and ASIC to fully leverage the benefit of
quantization?

» And many more..

Frankle, Jonathan, and Michael Carbin. "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks." International Conference on Learning Representations. 201¢
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Knowledge Distillation
f(x, 0)

> Training paradigm that involves

- Student: the model to be trained.
Small, shallow and deployment
oriented

- Teacher: pre-trained. Deep and |
effective

> The student cannot learn the same -
function f(x, @) as the teacher ‘
extrapolating it from the examples

> It could by mimicking its outputs on f(x,0)

the samples
(x,0) ~ f(x,0)



Logits

» Logits. z € R, with ¢ number of classes.

» Class Probabilities. p; = softmax(z,)



Logits Approximation

> One-hot encoded label

> Single class information

Class Probabilities
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Logits Approximation

> One-hot encoded label
> Single class information
> Teacher logits.
> Multi-class and intra-class 2
information g @ ?

airplane car  bird cat deer dog frog horse ship truck
Classes

Train the student to approximate the logits of the teacher




Feature Approximation

> Features representation encodes
inner knowledge of the teacher

Feature-Based Knowledge Distillation

Teacher Model

> Forcing the student activations

to be similar to the teacher ones

Student Model

>  Logits

> Logits

| N

Classical Loss Hint Loss



Knowledge Distillation Performance

» Multi-level distillation

> Performance on ImageNet

> +2.6 % Topl w.r.t to standard

training

> No inference overhead

:

a1 (t;(x);7)

q3 (tj(x); 1) q5(tj(x); 7) q3(tj(x); 1)
c; cs c

i

1
:\Student backbone f5(-) F iq j

_’l Stage2 I-—*

4

Classifier 1 p°(t;(x); 1)

_____________________________________________________________________

Model Topl

Student
Teacher

69.8
3.3

Student + KD 72.4

Yang, Chuanguang, et al. "Hierarchical Self-supervised Augmented Knowledge Distillation”, International Joint Conference on Artificial Intelligence 2021.




Research Question

v

v

v

Knowledge Distillation is etfective but..

RQ1. Poor theoretical basis
RQ2. Knowledge distillation vs label smoothing?

RQ3. Combinations with other compression methods?

And many more..



Research Question

Thanks for the attention!

cosimo.rulli@phd.unipi.it
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